Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 3(119), 2022

DOI: 10.1073/pnas.2115629119

Links

Tools

Export citation

Search in Google Scholar

Thermodynamic controls on rates of iron oxide reduction by extracellular electron shuttles

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Significance Under anoxic conditions, various microorganisms couple the oxidation of organic carbon to the reduction of solid ferric iron oxide phases using extracellular electron shuttles (EES). Determining the contribution of this widespread terminal electron accepting process to total anaerobic respiration has proven challenging because of large variations in observed ferric iron reduction rates. This study demonstrates that rates of ferric iron oxide reduction by EES can be rationalized based on a unifying relationship that links rates to the thermodynamic driving force for the least favorable electron transfer from the EES to ferric iron. The relationship derived herein allows for a generalized and precise assessment of the contribution of EES-facilitated ferric iron oxide reduction to organic matter decomposition in anoxic environments.