Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Applied Sciences, 18(11), p. 8458, 2021

DOI: 10.3390/app11188458

Links

Tools

Export citation

Search in Google Scholar

Light-Induced Advanced Oxidation Processes as PFAS Remediation Methods: A Review

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

PFAS substances, which have been under investigation in recent years, are certainly some of the most critical emerging contaminants. Their presence in drinking water, correlated with diseases, is consistently being confirmed by scientific studies in the academic and health sectors. With the aim of developing new technologies to mitigate the water contamination problem, research activity based on advanced oxidation processes for PFAS dealkylation and subsequent mineralization is active. While UV radiation could be directly employed for decontamination, there are nevertheless considerable problems regarding its use, even from a large-scale perspective. In contrast, the use of cheap, robust, and green photocatalytic materials active under near UV-visible radiation shows interesting prospects. In this paper we take stock of the health problems related to PFAS, and then provide an update on strategies based on the use of photocatalysts and the latest findings regarding reaction mechanisms. Finally, we detail some brief considerations in relation to the economic aspects of possible solutions.