Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Chemosensors, 11(9), p. 316, 2021

DOI: 10.3390/chemosensors9110316

Links

Tools

Export citation

Search in Google Scholar

Metal-Organic-Frameworks: Low Temperature Gas Sensing and Air Quality Monitoring

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

As an emerging class of hybrid nanoporous materials, metal-organic frameworks (MOFs) have attracted significant attention as promising multifunctional building blocks for the development of highly sensitive and selective gas sensors due to their unique properties, such as large surface area, highly diversified structures, functionalizable sites and specific adsorption affinities. Here, we provide a review of recent advances in the design and fabrication of MOF nanomaterials for the low-temperature detection of different gases for air quality and environmental monitoring applications. The impact of key structural parameters including surface morphologies, metal nodes, organic linkers and functional groups on the sensing performance of state-of-the-art sensing technologies are discussed. This review is concluded by summarising achievements and current challenges, providing a future perspective for the development of the next generation of MOF-based nanostructured materials for low-temperature detection of gas molecules in real-world environments.