Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Catalysts, 6(11), p. 729, 2021

DOI: 10.3390/catal11060729

Links

Tools

Export citation

Search in Google Scholar

Inversion of the Photogalvanic Effect of Conductive Polymers by Porphyrin Dopants

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Conductive polymers are widely used as active and auxiliary materials for organic photovoltaic cells due to their easily tunable properties, high electronic conductivity, and light absorption. Several conductive polymers show the cathodic photogalvanic effect in pristine state. Recently, photoelectrochemical oxygen reduction has been demonstrated for nickel complexes of Salen-type ligands. Herein, we report an unexpected inversion of the photogalvanic effect caused by doping of the NiSalen polymers with anionic porphyrins. The observed effect was studied by means of UV-Vis spectroscopy, cyclic voltammetry and chopped light chronoamperometry. While pristine NiSalens exhibit cathodic photopolarization, doping with porphyrins inverts the polarization. As a result, photoelectrochemical oxidation of the ascorbate proceeds smoothly on the NiSalen electrode doped with zinc porphyrins. The highest photocurrents were observed on NiSalen polymer with o-phenylene imine bridge, doped with anionic zinc porphyrin. Assuming this, porphyrin serves both as a catalytic center for the oxidation of ascorbate and an internal electron donor, facilitating the photoinduced charge transport and anodic depolarization.