Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 49(118), 2021

DOI: 10.1073/pnas.2112817118

Links

Tools

Export citation

Search in Google Scholar

Redox conditions correlated with vibronic coupling modulate quantum beats in photosynthetic pigment–protein complexes

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Significance Photosynthetic organisms evolved their light-harvesting antenna complexes to optimize energy transfer. It was recently shown that the redox environment can tune the mixing of electronic and vibrational states to steer energy through different pathways of a pigment–protein complex. Quantum beating signals in the spectra of pigment–protein complexes have been used to probe the excited-state dynamics within the complexes, but the microscopic dynamics that generate these signals and their role in promoting energy transfer are not fully understood. Here, we show that the redox environment that tunes energy transfer similarly tunes the quantum beating signals in the same complex. We find that the beats report on excited-state vibrations that maintain coherence through the vibronically enhanced energy transfer process.