Dissemin is shutting down on January 1st, 2025

Published in

American Association for the Advancement of Science, Ultrafast Science, (2021), 2021

DOI: 10.34133/2021/9820716

Links

Tools

Export citation

Search in Google Scholar

Polarization Flipping of Even-Order Harmonics in Monolayer Transition-Metal Dichalcogenides

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We present a systematic study of the crystal-orientation dependence of high-harmonic generation in monolayer transition-metal dichalcogenides, WS 2 and MoSe 2 , subjected to intense linearly polarized midinfrared laser fields. The measured spectra consist of both odd- and even-order harmonics, with a high-energy cutoff extending beyond the 15th order for a laser-field strength around ~1 V/nm. In WS 2 , we find that the polarization direction of the odd-order harmonics smoothly follows that of the laser field irrespective of the crystal orientation, whereas the direction of the even-order harmonics is fixed by the crystal mirror planes. Furthermore, the polarization of the even-order harmonics shows a flip in the course of crystal rotation when the laser field lies between two of the crystal mirror planes. By numerically solving the semiconductor Bloch equations for a gapped-graphene model, we qualitatively reproduce these experimental features and find the polarization flipping to be associated with a significant contribution from interband polarization. In contrast, high-harmonic signals from MoSe 2 exhibit deviations from the laser-field following of odd-order harmonics and crystal-mirror-plane following of even-order harmonics. We attribute these differences to the competing roles of the intraband and interband contributions, including the deflection of the electron-hole trajectories by nonparabolic crystal bands.