Published in

MDPI, Nanomaterials, 4(11), p. 844, 2021

DOI: 10.3390/nano11040844

Links

Tools

Export citation

Search in Google Scholar

Analysis of Heat Transfer Characteristics of a GnP Aqueous Nanofluid through a Double-Tube Heat Exchanger

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The thermal properties of graphene have proved to be exceptional and are partly maintained in its multi-layered form, graphene nanoplatelets (GnP). Since these carbon-based nanostructures are hydrophobic, functionalization is needed in order to assess their long-term stability in aqueous suspensions. In this study, the convective heat transfer performance of a polycarboxylate chemically modified GnP dispersion in water at 0.50 wt% is experimentally analyzed. After designing the nanofluid, dynamic viscosity, thermal conductivity, isobaric heat capacity and density are measured using rotational rheometry, the transient hot-wire technique, differential scanning calorimetry and vibrating U-tube methods, respectively, in a wide temperature range. The whole analysis of thermophysical and rheological properties is validated by two laboratories. Afterward, an experimental facility is used to evaluate the heat transfer performance in a turbulent regime. Convective heat transfer coefficients are obtained using the thermal resistances method, reaching enhancements for the nanofluid of up to 13%. The reported improvements are achieved without clear enhancements in the nanofluid thermal conductivity. Finally, dimensionless analyses are carried out by employing the Nusselt and Péclet numbers and Darcy friction factor.