Dissemin is shutting down on January 1st, 2025

Published in

European Geosciences Union, Atmospheric Chemistry and Physics, 21(21), p. 16575-16591, 2021

DOI: 10.5194/acp-21-16575-2021

Links

Tools

Export citation

Search in Google Scholar

A weather regime characterisation of winter biomass aerosol transport from southern Africa

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

During austral winter, a compact low cloud deck over the South Atlantic contrasts with clear sky over southern Africa, where forest fires triggered by dry conditions emit large amounts of biomass burning aerosols (BBAs) in the free troposphere. Most of the BBA burden crosses the South Atlantic embedded in the tropical easterly flow. However, midlatitude synoptic disturbances can deflect part of the aerosol from the main transport path towards southern extratropics. In this study, the first objective classification of the synoptic variability controlling the spatial distribution of BBA in southern Africa and the South Atlantic during austral winter (August to October) is presented. By analysing atmospheric circulation data from reanalysis products, a six-class weather regime (WR) classification of the region is constructed. The classification reveals that the synoptic variability is composed of four WRs, representing disturbances travelling at midlatitudes, and two WRs accounting for pressure anomalies in the South Atlantic. The WR classification is then successfully used to characterise the aerosol spatial distribution in the region in the period 2003–2017, in both reanalysis products and station data. Results show that the BBA transport towards southern extratropics is controlled by weather regimes associated with midlatitude synoptic disturbances. In particular, depending on the relative position of the pressure anomalies along the midlatitude westerly flow, the BBA transport is deflected from the main tropical route towards southern Africa or the South Atlantic. Moreover, the WRs accounting for midlatitude disturbances show organised transition sequences, which allow one to illustrate the evolution of the BBA northerly transport across the region in the context of a wave pattern. The skill in characterising the BBA transport shown by the WR classification indicates the potential for using it as a diagnostic/predictive tool for the aerosol dynamics, which is a key component for the full understanding and modelling of the complex radiation–aerosol–cloud interactions controlling the atmospheric radiative budget in the region.