Published in

ADERA, OENO One, 1(55), p. 207-222, 2021

DOI: 10.20870/oeno-one.2021.55.1.4502

Links

Tools

Export citation

Search in Google Scholar

Optimising grapevine summer stress responses and hormonal balance by applying kaolin in two Portuguese Demarcated Regions

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown
Data provided by SHERPA/RoMEO

Abstract

In Mediterranean-like climate areas, field-grown grapevines are typically exposed to severe environmental conditions during the summer season, which can negatively impact the sustainability of viticulture. Despite the short-term mitigation strategies available nowadays to cope with climate change, little is known regarding their effectiveness in different demarcated winegrowing regions with differing climate features. Hence, we applied a kaolin suspension (5 %) to Touriga-Franca (TF) and Touriga-Nacional (TN) grapevine varieties located in two Portuguese demarcated regions (Alentejo and Douro) with different mesoclimates to study its effect on the physiological performance, hormonal balance and ABA-related grapevine leaf gene expression during the 2017 and 2018 growing seasons. Data show that 2017 was warmer than 2018 due to the occurrence of two heatwaves in both locations, highlighting the protective effect of kaolin application under severe environmental conditions. In the first study year, at midday, kaolin enhanced water use efficiency (23 % in Douro and 13 % in Alentejo), carbon assimilation rates (PN; 72 % in Douro and 25 % in Alentejo), and the soluble sugar content of grapevine leaves, while decreasing the accumulation of plant growth regulators (ABA, IAA, and SA) during the ripening stage. The results show an up-regulation of ABA biosynthesis-related genes (VvNCED) in TF treated vines from the Douro vineyard mainly in 2017, suggesting an increased stress response under severe summer conditions. Additionally, kaolin triggered the expression of ABA-responsive genes (VvHVA22a and VvSnRK2.6) mainly in TF, indicating different varietal responses to kaolin application under fluctuating periods of summer stress.