Published in

Optica, Optics Letters, 17(46), p. 4232, 2021

DOI: 10.1364/ol.430827

Links

Tools

Export citation

Search in Google Scholar

Ultra-broadband 3 dB power splitter from 155 to 2 µm wave band

Journal article published in 2021 by Zelu Wang, Yingjie Liu, Zi Wang, Yilin Liu, Jiangbing Du ORCID, Qinghai Song ORCID, Ke Xu ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Extending the optical communication wavelengths to 2 µm can significantly increase data capacity. Silicon photonics, which is a proven device integration technology, has made rapid progress at 2 µm recently. As a fundamental functional element in the photonic design kit, the 3 dB power splitter has been extensively studied in both the 1.55 µm and 2 µm regime. While the device is highly desirable to operate over both wave bands, the large waveguide dispersion in silicon makes it challenging. In this work, we demonstrate an ultra-broadband power splitter on silicon, which has a 0.2 dB bandwidth exceeding 520 nm from 1500 to 2020 nm according to simulations. The beam splitter is realized by a triple tapered Y-junction, and its operational bandwidth is greatly increased by subwavelength grating structure. The device has an ultra-compact footprint of only 3 µ m × 2 µ m . Due to the limitations on the setup and coupling technique, we measure the device bandwidth in 1.55 µm and 2 µm wave bands. The device insertion loss is measured to be below 0.4 dB from 1500 to 1620 nm and from 1960 to 2020 nm, respectively. According to these results, the proposed device is believed to be capable of operating over a broadband from 1.55 µm and 2 µm wavelengths.