Published in

Optica, Optics Letters, 5(47), p. 1186, 2022

DOI: 10.1364/ol.452476

Links

Tools

Export citation

Search in Google Scholar

Silicon photonic arrayed waveguide grating with 64 channels for the 2 µm spectral range

Journal article published in 2022 by Yingjie Liu, Xi Wang, Yong Yao, Jiangbing Du ORCID, Qinghai Song ORCID, Ke Xu ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Driven by the demand to extend optical fiber communications wavelengths beyond the C + L band, the 2 µm wave band has proven to be a promising candidate. Extensive efforts have been directed into developing high-performance and functional photonic devices. Here we report an integrated silicon photonic arrayed waveguide grating (AWG) fabricated in a commercial foundry. The device has 64 channels with a spacing of approximately 50 GHz (0.7 nm), covering the bandwidth from 1967 nm to 2012 nm. The on-chip insertion loss of the AWG is measured to be approximately 5 dB. By implementing a TiN metal layer, the AWG spectrum can be thermally tuned with an efficiency of 0.27 GHz/mW. The device has a very compact configuration with a footprint of 2.3 mm × 2 mm. The demonstrated AWG can potentially be used for dense wavelength division multiplexing in the 2 µm spectral band.