Published in

American Astronomical Society, Astrophysical Journal, 2(925), p. 176, 2022

DOI: 10.3847/1538-4357/ac402f

Links

Tools

Export citation

Search in Google Scholar

Convolutional Neural Networks and Stokes Response Functions

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract In this work, we study the information content learned by a convolutional neural network (CNN) when trained to carry out the inverse mapping between a database of synthetic Ca ii intensity spectra and the vertical stratification of the temperature of the atmospheres used to generate such spectra. In particular, we evaluate the ability of the neural network to extract information about the sensitivity of the spectral line to temperature as a function of height. By training the CNN on sufficiently narrow wavelength intervals across the Ca ii spectral profiles, we find that the error in the temperature prediction shows an inverse relationship to the response function of the spectral line to temperature, that is, different regions of the spectrum yield a better temperature prediction at their expected regions of formation. This work shows that the function that the CNN learns during the training process contains a physically meaningful mapping between wavelength and atmospheric height.