Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Energies, 24(14), p. 8348, 2021

DOI: 10.3390/en14248348

Links

Tools

Export citation

Search in Google Scholar

Analysis of Stationary- and Synchronous-Reference Frames for Three-Phase Three-Wire Grid-Connected Converter AC Current Regulators

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The current state of the art shows that unbalance and distortion on the voltage waveforms at the terminals of a grid-connected inverter disturb its output currents. This paper compares AC linear current regulators for three-phase three-wire voltage source converters with three different reference frames, namely: (1) natural (abc), (2) orthogonal stationary (αβ), and (3) orthogonal synchronous (dq). The quantitative comparison analysis is based on mathematical models of grid disturbances using the impedance-based analysis, the computational effort assessment, as well as the steady-state and transient performance evaluation based on experimental results. The control scheme devised in the dq-frame has the highest computational effort and inferior performance under negative-sequence voltage disturbances, whereas it shows superior performance under positive-sequence voltages among the reference frames evaluated. In contrast, the stationary natural frame abc has the lowest computational effort due to its straightforward implementation, with similar results in terms of steady-state and transient behavior. The αβ-frame is an intermediate solution in terms of computational cost.