Published in

Wiley, Angewandte Chemie, 34(133), p. 18931-18939, 2021

DOI: 10.1002/ange.202106230

Wiley, Angewandte Chemie International Edition, 34(60), p. 18783-18791, 2021

DOI: 10.1002/anie.202106230

Links

Tools

Export citation

Search in Google Scholar

Dynamic Nucleophilic Aromatic Substitution of Tetrazines

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractA dynamic nucleophilic aromatic substitution of tetrazines (SNTz) is presented herein. It combines all the advantages of dynamic covalent chemistry with the versatility of the tetrazine moiety. Indeed, libraries of compounds or sophisticated molecular structures can be easily obtained, which are susceptible to post‐functionalization by inverse electron demand Diels–Alder (IEDDA) reaction, which also locks the exchange. Additionally, the structures obtained can be disassembled upon the application of the right stimulus, either UV irradiation or a suitable chemical reagent. Moreover, SNTz is compatible with the imine chemistry of anilines. The high potential of this methodology has been proved by building two responsive supramolecular systems: A macrocycle that displays a light‐induced release of acetylcholine; and a truncated [4+6] tetrahedral shape‐persistent fluorescent cage, which is disassembled by thiols unless it is post‐stabilized by IEDDA.