Published in

American Astronomical Society, Astrophysical Journal Letters, 2(924), p. L22, 2022

DOI: 10.3847/2041-8213/ac4701

Links

Tools

Export citation

Search in Google Scholar

Evidence for Plasma Heating at Thin Current Sheets in the Solar Wind

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Plasma heating at thin current sheets in the solar wind is examined using magnetic field and plasma data obtained by the WIND spacecraft in the past 17 years from 2004 to 2019. In this study, a thin current sheet is defined by an abrupt rotation (larger than 45°) of the magnetic field direction in 3 s. A total of 57,814 current sheets have been identified, among which 25,018 current sheets are located in the slow wind and 19,842 current sheets are located in the fast wind. Significant plasma heating is found at current sheets in both slow and fast wind. Proton temperature increases more significantly at current sheets in the fast wind than in the slow wind, while the enhancement in electron temperature is less remarkable at current sheets in the fast wind. The results reveal that plasma heating commonly exists at thin current sheets in the solar wind regardless of the wind speed, but the underlying heating mechanisms might be different.