Published in

Springer (part of Springer Nature), Cellulose, 12(28), p. 7687-7705, 2021

DOI: 10.1007/s10570-021-03986-5

Links

Tools

Export citation

Search in Google Scholar

From unavoidable food waste to advanced biomaterials: microfibrilated lignocellulose production by microwave-assisted hydrothermal treatment of cassava peel and almond hull

Journal article published in 2021 by Allyn P. Sulaeman, Yang Gao, Tom Dugmore ORCID, Javier Remón, Avtar S. Matharu ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractLignocellulose based nanomaterials are emerging green biosolids commonly obtained from wood pulp. Alternative feedstocks, such as as unavoidable food waste, are interesting resources for nano/microfibers. This research reports the production and characterization of microfibrillated lignocellulose (MFLC) from cassava peel (CP) and almond hull (AH) via acid-free microwave-assisted hydrothermal treatment (MHT) at different temperatures (120–220 °C). During processing, the structural changes were tracked by ATR-IR, TGA, XRD, 13C CPMAS NMR, zeta potential, HPLC, elemental analysis (CHN; carbon, hydrogen and nitrogen), TEM and SEM analyses. The microwave processing temperature and nature of feedstock exerted a significant influence on the yields and properties of the MFLCs produced. The MFLC yields from CP and AH shifted by 15–49% and 31–73%, respectively. Increasing the MHT temperature substantially affected the crystallinity index (13–66% for CP and 36–62% for AH) and thermal stability (300–374 °C for CP and 300–364 °C for AH) of the MFLCs produced. This suggested that the MFLC from CP is more fragile and brittle than that produced from AH. These phenomena influenced the gelation capabilities of the fibers. AH MFLC pretreated with ethanol at low temperature gave better film-forming capabilities, while untreated and heptane pretreated materials formed stable hydrogels at solid concentration (2% w/v). At high processing temperatures, the microfibrils were separated into elementary fibers, regardless of pretreatment or feedstock type. Given these data, this work demonstrates that the acid-free MHT processing of CP and AH is a facile method for producing MFLC with potential applications, including adsorption, packaging and the production of nanocomposites and personal care rheology modifiers. Graphic abstract