Published in

American Astronomical Society, Astrophysical Journal Supplement, 2(253), p. 52, 2021

DOI: 10.3847/1538-4365/abe2a8

Links

Tools

Export citation

Search in Google Scholar

A DG-IMEX Method for Two-moment Neutrino Transport: Nonlinear Solvers for Neutrino–Matter Coupling*

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Neutrino–matter interactions play an important role in core-collapse supernova (CCSN) explosions, as they contribute to both lepton number and/or four-momentum exchange between neutrinos and matter and thus act as the agent for neutrino-driven explosions. Due to the multiscale nature of neutrino transport in CCSN simulations, an implicit treatment of neutrino–matter interactions is desired, which requires solutions of coupled nonlinear systems in each step of the time integration scheme. In this paper, we design and compare nonlinear iterative solvers for implicit systems with energy-coupling neutrino–matter interactions commonly used in CCSN simulations. Specifically, we consider electron neutrinos and antineutrinos, which interact with static matter configurations through the Bruenn 85 opacity set. The implicit systems arise from the discretization of a nonrelativistic two-moment model for neutrino transport, which employs the discontinuous Galerkin (DG) method for phase-space discretization and an implicit–explicit (IMEX) time integration scheme. In the context of this DG-IMEX scheme, we propose two approaches to formulate the nonlinear systems: a coupled approach and a nested approach. For each approach, the resulting systems are solved with Anderson-accelerated fixed-point iteration and Newton’s method. The performance of these four iterative solvers has been compared on relaxation problems with various degrees of collisionality, as well as proto–neutron star deleptonization problems with several matter profiles adopted from spherically symmetric CCSN simulations. Numerical results suggest that the nested Anderson-accelerated fixed-point solver is more efficient than other tested solvers for solving implicit nonlinear systems with energy-coupling neutrino–matter interactions.