Dissemin is shutting down on January 1st, 2025

Published in

Copernicus Publications, Earth System Science Data, 11(13), p. 5455-5467, 2021

DOI: 10.5194/essd-13-5455-2021

Links

Tools

Export citation

Search in Google Scholar

A high-accuracy rainfall dataset by merging multiple satellites and dense gauges over the southern Tibetan Plateau for 2014–2019 warm seasons

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Tibetan Plateau (TP) is well known as Asia's water tower from where many large rivers originate. However, due to complex spatial variability in climate and topography, there is still a lack of a high-quality rainfall dataset for hydrological modeling and flood prediction. This study therefore aims to establish a high-accuracy daily rainfall product through merging rainfall estimates from three satellites, i.e., GPM-IMERG, GSMaP and CMORPH, based on a high-density rainfall gauge network. The new merged daily rainfall dataset with a spatial resolution of 0.1∘ focuses on warm seasons (10 June–31 October) from 2014 to 2019. Statistical evaluation indicated that the new dataset outperforms the raw satellite estimates, especially in terms of rainfall accumulation and the detection of ground-based rainfall events. Hydrological evaluation in the Yarlung Zangbo River basin demonstrated high performance of the merged rainfall dataset in providing accurate and robust forcings for streamflow simulations. The new rainfall dataset additionally shows superiority to several other products of similar types, including MSWEP and CHIRPS. This new rainfall dataset is publicly accessible at https://doi.org/10.11888/Hydro.tpdc.271303 (Li and Tian, 2021).