Full text: Download
Efficiently detecting peanut traces in food products can prevent severe allergic reactions and serious health implications. This work presents the development of an electrochemical dual immunosensor for the simultaneous analysis of two major peanut allergens, Ara h 1 and Ara h 6, in food matrices. A sandwich immunoassay was performed on a dual working screen-printed carbon electrode using monoclonal antibodies. The antibody–antigen interaction was detected by linear sweep voltammetry through the oxidation of enzymatically deposited silver, which was formed by using detection antibodies labeled with alkaline phosphatase and a 3-indoxyl phosphate/silver nitrate mixture as the enzymatic substrate. The assay time was 2 h 20 min, with a hands-on time of 30 min, and precise results and low limits of detection were obtained (Ara h 1: 5.2 ng·mL−1; Ara h 6: 0.017 ng·mL−1). The selectivity of the method was confirmed through the analysis of other food allergens and ingredients (e.g., hazelnut, soybean and lupin). The dual sensor was successfully applied to the analysis of several food products and was able to quantify the presence of peanuts down to 0.05% (w/w). The accuracy of the results was confirmed through recovery studies and by comparison with an enzyme-linked immunosorbent assay. Tracking food allergens is of utmost importance and can be performed using the present biosensor in a suitable and practical way.