Published in

MDPI, Energies, 11(14), p. 3293, 2021

DOI: 10.3390/en14113293

Links

Tools

Export citation

Search in Google Scholar

Optimal Solution for an Energy Efficient Construction of a Ventilated Façade Obtained by a Genetic Algorithm

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

To design a residential or commercial building with high energy performance that would be economical at the same time, an analysis was performed that relates these two aspects of the problem. The first aspect is focused on evaluation of the thermal performance of a multi-layered wall in order to achieve the lowest energy consumption for heating and cooling. The second aspect of the analysis covered the choice of materials (type, thickness and price) so that the building has the lowest possible construction costs, but the best achieved thermal comfort. The three types of external walls with the same structure were analyzed in this paper. The lowest and highest values of the layer thickness offered by the manufacturer were chosen and their dynamic characteristics for the heat transfer were calculated. The following step was to perform optimization of the objective function, which was defined by the unit price of the material per mass of the material, that is, the economical aspect was provided. The genetic algorithm method was used to obtain the optimal thickness of the external wall layers that provided the best dynamic characteristics for the heat transfer in the defined conditions.