Published in

TP48. TP048 COVID: ARDS CLINICAL STUDIES, 2021

DOI: 10.1164/ajrccm-conference.2021.203.1_meetingabstracts.a2483

BioMed Central, Critical Care, 1(25), 2021

DOI: 10.1186/s13054-021-03518-4

Acute critical care, 2021

DOI: 10.1183/13993003.congress-2021.pa3318

Links

Tools

Export citation

Search in Google Scholar

An appraisal of respiratory system compliance in mechanically ventilated covid-19 patients

Journal article published in 2021 by Gianluigi Li Bassi, Alberto Zanella, Dawid van Straaten, Ahmed Zaqout, Toshiki Yokoyama, Maria de Piero, Akram Zaaqoq, Bishoy Zakhary, Eka YudhaLantang, Saptadi Yuliarto, Meredith Young, E. Wilson Grandin, Trent Witt, Gianluigi Li Bassi, Pauline Yeung Ng and other authors.
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Background Heterogeneous respiratory system static compliance (CRS) values and levels of hypoxemia in patients with novel coronavirus disease (COVID-19) requiring mechanical ventilation have been reported in previous small-case series or studies conducted at a national level. Methods We designed a retrospective observational cohort study with rapid data gathering from the international COVID-19 Critical Care Consortium study to comprehensively describe CRS—calculated as: tidal volume/[airway plateau pressure-positive end-expiratory pressure (PEEP)]—and its association with ventilatory management and outcomes of COVID-19 patients on mechanical ventilation (MV), admitted to intensive care units (ICU) worldwide. Results We studied 745 patients from 22 countries, who required admission to the ICU and MV from January 14 to December 31, 2020, and presented at least one value of CRS within the first seven days of MV. Median (IQR) age was 62 (52–71), patients were predominantly males (68%) and from Europe/North and South America (88%). CRS, within 48 h from endotracheal intubation, was available in 649 patients and was neither associated with the duration from onset of symptoms to commencement of MV (p = 0.417) nor with PaO2/FiO2 (p = 0.100). Females presented lower CRS than males (95% CI of CRS difference between females-males: − 11.8 to − 7.4 mL/cmH2O p < 0.001), and although females presented higher body mass index (BMI), association of BMI with CRS was marginal (p = 0.139). Ventilatory management varied across CRS range, resulting in a significant association between CRS and driving pressure (estimated decrease − 0.31 cmH2O/L per mL/cmH20 of CRS, 95% CI − 0.48 to − 0.14, p < 0.001). Overall, 28-day ICU mortality, accounting for the competing risk of being discharged within the period, was 35.6% (SE 1.7). Cox proportional hazard analysis demonstrated that CRS (+ 10 mL/cm H2O) was only associated with being discharge from the ICU within 28 days (HR 1.14, 95% CI 1.02–1.28, p = 0.018). Conclusions This multicentre report provides a comprehensive account of CRS in COVID-19 patients on MV. CRS measured within 48 h from commencement of MV has marginal predictive value for 28-day mortality, but was associated with being discharged from ICU within the same period. Trial documentation: Available at https://www.covid-critical.com/study. Trial registration: ACTRN12620000421932.