Published in

MDPI, Polymers, 18(13), p. 3020, 2021

DOI: 10.3390/polym13183020

Links

Tools

Export citation

Search in Google Scholar

Antioxidant Potential of the Bio-Based Fucose-Rich Polysaccharide FucoPol Supports Its Use in Oxidative Stress-Inducing Systems

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Reactive oxygen species (ROS) are dangerous sources of macromolecular damage. While most derive from mitochondrial oxidative phosphorylation, their production can be triggered by exogenous stresses, surpassing the extinction capacity of intrinsic antioxidant defense systems of cells. Here, we report the antioxidant activity of FucoPol, a fucose-rich polyanionic polysaccharide produced by Enterobacter A47, containing ca. 17 wt% of negatively charged residues in its structure. Ferric reducing antioxidant power (FRAP) assays coupled to Hill binding kinetics fitting have shown FucoPol can neutralize ferricyanide and Fe3+-TPTZ species at an EC50 of 896 and 602 µg/mL, respectively, with positive binding cooperativity (2.52 ≤ H ≤ 4.85). This reducing power is greater than most polysaccharides reported. Moreover, an optimal 0.25% w/v FucoPol concentration shown previously to be cryo- and photoprotective was also demonstrated to protect Vero cells against H2O2-induced acute exposure not only by attenuating metabolic viability decay, but also by accentuating post-stress proliferation capacity, whilst preserving cell morphology. These results on antioxidant activity provide evidence for the biopolymer’s ability to prevent positive feedback cascades of the radical-producing Fenton reaction. Ultimately, FucoPol provides a biotechnological alternative for implementation in cryopreservation, food supplementation, and photoprotective sunscreen formula design, as all fields benefit from an antioxidant functionality.