Published in

MDPI, Polymers, 5(14), p. 977, 2022

DOI: 10.3390/polym14050977

Links

Tools

Export citation

Search in Google Scholar

Improvement of the PLA Crystallinity and Heat Distortion Temperature Optimizing the Content of Nucleating Agents and the Injection Molding Cycle Time

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Three different commercial nucleating agents (LAK, talc, and calcium carbonate) were added at different weight percentages into poly (lactic acid) (PLA) in order to investigate the mechanical and thermo-mechanical behavior of blends in correlation to injection molding parameters. After as-sessing the best content of each nucleating agent, analyzing isothermal and non-isothermal crys-tallization, two cycle times that can be industrially adopted were selected. Crystallinity highly impacts the flexural modulus, while it improves the heat deflection temperature only when the crystallinity percentage is above 50%; nevertheless, an excessive crystallinity content leads to a decrement of impact resistance. LAK does not appear to be sensitive to cycle time while talc and calcium carbonate proved to be effective if a cycle time of 60 s is adopted. Since the choice of nu-cleating agent is not univocal, the identification of the best nucleating agents is subject to the technical specifications required by the application, accotuing for the most important commercial requirements (productivity, temperature, and impact resistance).