Published in

Oxford University Press (OUP), European Heart Journal - Cardiovascular Imaging, 1(23), p. 74-84, 2021

DOI: 10.1093/ehjci/jeab222

Links

Tools

Export citation

Search in Google Scholar

The prognostic impact of mechanical atrial dysfunction and atrial fibrillation in heart failure with preserved ejection fraction

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Aims This study assessed the prognostic implications of mechanical atrial dysfunction in heart failure with preserved ejection fraction (HFpEF) patients with different stages of atrial fibrillation (AF) in detail. Methods and results HFpEF patients (n = 258) systemically underwent an extensive clinical characterization, including 24-h Holter monitoring and speckle-tracking echocardiography. Patients were categorized according to rhythm and stages of AF: 112 with no history of AF (no AF), 56 with paroxysmal AF (PAF), and 90 with sustained (persistent/permanent) AF (SAF). A progressive decrease in mechanical atrial function was seen: left atrial reservoir strain (LASr) 30.5 ± 10.5% (no AF), 22.3 ± 10.5% (PAF), and 13.9 ± 7.8% (SAF), P < 0.001. Independent predictors for lower LASr values were AF, absence of chronic obstructive pulmonary disease, higher N-terminal-pro hormone B-type natriuretic peptide, left atrial volume index, and relative wall thickness, lower left ventricular global longitudinal strain, and echocardiographic signs of elevated left ventricular filling pressure. LASr was an independent predictor of adverse outcome (hazard ratio per 1% decrease =1.049, 95% confidence interval 1.014–1.085, P = 0.006), whereas AF was not when the multivariable model included LASr. Moreover, LASr mediated the adverse outcome associated with AF in HFpEF (P = 0.008). Conclusion Mechanical atrial dysfunction has a possible greater prognostic role in HFpEF compared to AF status alone. Mechanical atrial dysfunction is a predictor of adverse outcome independently of AF presence or stage, and may be an underlying mechanism (mediator) for the worse outcome associated with AF in HFpEF. This may suggest mechanical atrial dysfunction plays a crucial role in disease progression in HFpEF patients with AF, and possibly also in HFpEF patients without AF.