Published in

American Heart Association, Circulation Research, 12(129), p. 1141-1157, 2021

DOI: 10.1161/circresaha.121.318908

Links

Tools

Export citation

Search in Google Scholar

Deficient Chaperone-Mediated Autophagy Promotes Inflammation and Atherosclerosis

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Rationale: The NLRP3 (NLR [NOD-like receptor] family, pyrin domain containing 3) inflammasome is an important driver of atherosclerosis. Our previous study shows that chaperone-mediated autophagy (CMA), one of the main lysosomal degradative process, has a regulatory role in lipid metabolism of macrophages. However, whether the NLRP3 inflammasome is regulated by CMA, and the role of CMA in atherosclerosis remains unclear. Objective: To determine the role of CMA in the regulation of NLRP3 inflammasome and atherosclerosis. Methods and Results: The expression of CMA marker, LAMP-2A (lysosome-associated membrane protein type 2A), was first analyzed in ApoE −/− mouse aortas and human coronary atherosclerotic plaques, and a significant downregulation of LAMP-2A in advanced atherosclerosis in both mice and humans was observed. To selectively block CMA, we generated macrophage-specific conditional LAMP-2A knockout mouse strains in C57BL/6 mice and ApoE −/− mice. Deletion of macrophage LAMP-2A accelerated atherosclerotic lesion formation in the aortic root and the whole aorta in ApoE −/− mice. Mechanistically, LAMP-2A deficiency promoted NLRP3 inflammasome activation and subsequent release of mature IL (interleukin)-1β in macrophages and atherosclerotic plaques. Furthermore, gain-of-function studies verified that restoration of LAMP-2A levels in LAMP-2A–deficient macrophages greatly attenuated NLRP3 inflammasome activation. Importantly, we identified the NLRP3 protein as a CMA substrate and demonstrated that LAMP-2A deficiency did not affect the NLRP3 mRNA levels but hindered degradation of the NLRP3 protein through CMA pathway. Conclusions: CMA function becomes impaired during the progression of atherosclerosis, which increases NLRP3 inflammasome activation and secretion of IL-1β, promoting vascular inflammation and atherosclerosis progression. Our study unveils a new mechanism by which NLRP3 inflammasome is regulated in macrophages and atherosclerosis, thus providing a new insight into the role of autophagy-lysosomal pathway in atherosclerosis. Pharmacological activation of CMA may provide a novel therapeutic strategy for atherosclerosis and other NLRP3 inflammasome/IL-1β–driven diseases.