Dissemin is shutting down on January 1st, 2025

Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 10(119), 2022

DOI: 10.1073/pnas.2115973119

Links

Tools

Export citation

Search in Google Scholar

Failed remyelination of the nonhuman primate optic nerve leads to axon degeneration, retinal damages, and visual dysfunction

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Significance Promotion of remyelination has become a new therapeutic avenue to prevent neuronal degeneration and promote recovery in white matter diseases, such as multiple sclerosis (MS). To date most of these strategies have been developed in short-lived rodent models of demyelination, which spontaneously repair. Well-defined nonhuman primate models closer to man would allow us to efficiently advance therapeutic approaches. Here we present a nonhuman primate model of optic nerve demyelination that recapitulates several features of MS lesions. The model leads to failed remyelination, associated with progressive axonal degeneration and visual dysfunction, thus providing the missing link to translate emerging preclinical therapies to the clinic for myelin disorders such as MS.