Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Viruses, 12(13), p. 2432, 2021

DOI: 10.3390/v13122432

Links

Tools

Export citation

Search in Google Scholar

High-Throughput Sequencing of Small RNAs for Diagnostics of Grapevine Viruses and Viroids in Russia

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The use of high-throughput sequencing (HTS) technology has led to significant progress in the identification of many viruses and their genetic variants. In this study, we used the HTS platform to sequence small RNAs (sRNAs) of grapevine to study the virome. Isolation of RNA was performed using symptomatic grapevines collected from commercial vineyards in Krasnodar Krai in 2017–2018. To determine the viromes of vineyards, we used an integrated approach that included a bioinformatic analysis of the results of sRNA HTS and the molecular method RT-PCR, which made it possible to identify 13 viruses and 4 viroids. Grapevine leafroll-associated virus 4 (GLRaV-4), Grapevine Syrah Virus-1 (GSyV-1), Raspberry bushy dwarf virus (RBDV), Australian grapevine viroid (AGVd), and Grapevine yellow speckle viroid 2 (GYSVd-2) were identified for the first time in Russia. Out of 38 samples analyzed, 37 had mixed infections with 4–11 viruses, indicating a high viral load. Analysis of the obtained sequences of fragments of virus genomes made it possible to identify recombination events in GLRaV-1, GLRaV-2, GLRaV-3, GLRaV-4, GVT, GPGV, GRSPaV, GVA, and GFLV. The obtained results indicate a wide spread of the viruses and a high genetic diversity in the vineyards of Krasnodar Krai and emphasize the urgent need to develop and implement long-term strategies for the control of viral grapevine diseases.