Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Nature Medicine, 1(28), p. 125-135, 2022

DOI: 10.1038/s41591-021-01581-6

Links

Tools

Export citation

Search in Google Scholar

Genomic predictors of response to PD-1 inhibition in children with germline DNA replication repair deficiency

Journal article published in 2022 by Anirban Das ORCID, Sumedha Sudhaman, Daniel Morgenstern ORCID, Ailish Coblentz, Jiil Chung, Simone C. Stone, Noor Alsafwani ORCID, Zhihui Amy Liu, Ola Abu Al Karsaneh, Shirin Soleimani, Hagay Ladany ORCID, David Chen, Matthew Zatzman, Vanja Cabric, Liana Nobre and other authors.
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractCancers arising from germline DNA mismatch repair deficiency or polymerase proofreading deficiency (MMRD and PPD) in children harbour the highest mutational and microsatellite insertion–deletion (MS-indel) burden in humans. MMRD and PPD cancers are commonly lethal due to the inherent resistance to chemo-irradiation. Although immune checkpoint inhibitors (ICIs) have failed to benefit children in previous studies, we hypothesized that hypermutation caused by MMRD and PPD will improve outcomes following ICI treatment in these patients. Using an international consortium registry study, we report on the ICI treatment of 45 progressive or recurrent tumors from 38 patients. Durable objective responses were observed in most patients, culminating in a 3 year survival of 41.4%. High mutation burden predicted response for ultra-hypermutant cancers (>100 mutations per Mb) enriched for combined MMRD + PPD, while MS-indels predicted response in MMRD tumors with lower mutation burden (10–100 mutations per Mb). Furthermore, both mechanisms were associated with increased immune infiltration even in ‘immunologically cold’ tumors such as gliomas, contributing to the favorable response. Pseudo-progression (flare) was common and was associated with immune activation in the tumor microenvironment and systemically. Furthermore, patients with flare who continued ICI treatment achieved durable responses. This study demonstrates improved survival for patients with tumors not previously known to respond to ICI treatment, including central nervous system and synchronous cancers, and identifies the dual roles of mutation burden and MS-indels in predicting sustained response to immunotherapy.