Dissemin is shutting down on January 1st, 2025

Published in

Public Library of Science, PLoS Computational Biology, 2(18), p. e1009903, 2022

DOI: 10.1371/journal.pcbi.1009903

Links

Tools

Export citation

Search in Google Scholar

Mapping the gene network landscape of Alzheimer’s disease through integrating genomics and transcriptomics

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Integration of multi-omics data with molecular interaction networks enables elucidation of the pathophysiology of Alzheimer’s disease (AD). Using the latest genome-wide association studies (GWAS) including proxy cases and the STRING interactome, we identified an AD network of 142 risk genes and 646 network-proximal genes, many of which were linked to synaptic functions annotated by mouse knockout data. The proximal genes were confirmed to be enriched in a replication GWAS of autopsy-documented cases. By integrating the AD gene network with transcriptomic data of AD and healthy temporal cortices, we identified 17 gene clusters of pathways, such as up-regulated complement activation and lipid metabolism, down-regulated cholinergic activity, and dysregulated RNA metabolism and proteostasis. The relationships among these pathways were further organized by a hierarchy of the AD network pinpointing major parent nodes in graph structure including endocytosis and immune reaction. Control analyses were performed using transcriptomics from cerebellum and a brain-specific interactome. Further integration with cell-specific RNA sequencing data demonstrated genes in our clusters of immunoregulation and complement activation were highly expressed in microglia.