Dissemin is shutting down on January 1st, 2025

Published in

American Association for the Advancement of Science, Science Advances, 4(8), 2022

DOI: 10.1126/sciadv.abm4322

Links

Tools

Export citation

Search in Google Scholar

Multi-principal elemental intermetallic nanoparticles synthesized via a disorder-to-order transition

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Nanoscale multi-principal element intermetallics (MPEIs) may provide a broad and tunable compositional space of active, high–surface area materials with potential applications such as catalysis and magnetics. However, MPEI nanoparticles are challenging to fabricate because of the tendency of the particles to grow/agglomerate or phase-separated during annealing. Here, we demonstrate a disorder-to-order phase transition approach that enables the synthesis of ultrasmall (4 to 5 nm) and stable MPEI nanoparticles (up to eight elements). We apply just 5 min of Joule heating to promote the phase transition of the nanoparticles into L1 0 intermetallic structure, which is then preserved by rapidly cooling. This disorder-to-order transition results in phase-stable nanoscale MPEIs with compositions (e.g., PtPdAuFeCoNiCuSn), which have not been previously attained by traditional synthetic methods. This synthesis strategy offers a new paradigm for developing previously unexplored MPEI nanoparticles by accessing a nanoscale-size regime and novel compositions with potentially broad applications.