Published in

IOS Press, Journal of Neuromuscular Diseases, 5(8), p. 801-814, 2021

DOI: 10.3233/jnd-210653

Links

Tools

Export citation

Search in Google Scholar

Profiling Serum Antibodies Against Muscle Antigens in Facioscapulohumeral Muscular Dystrophy Finds No Disease-Specific Autoantibodies

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Background: FSHD is caused by specific genetic mutations resulting in activation of the Double Homeobox 4 gene (DUX4). DUX4 targets hundreds of downstream genes eventually leading to muscle atrophy, oxidative stress, abnormal myogenesis, and muscle inflammation. We hypothesized that DUX4-induced aberrant expression of genes triggers a sustained autoimmune response against skeletal muscle cells. Objective: This study aimed at the identification of autoantibodies directed against muscle antigens in FSHD. Moreover, a possible relationship between serum antibody reactivity and DUX4 expression was also investigated. Methods: FSHD sera (N = 138, 48±16 years, 48% male) and healthy control sera (N = 20, 47±14 years, 50% male) were analyzed by immunoblotting for antibodies against several skeletal muscle protein extracts: healthy muscle, FSHD muscle, healthy and FSHD myotubes, and inducible DUX4 expressing myoblasts. In addition, DUX4 expressing myoblasts were analyzed by immunofluorescence with FSHD and healthy control sera. Results: The results showed that the reactivity of FSHD sera did not significantly differ from that of healthy controls, with all the tested muscle antigen extracts. Besides, the immunofluorescent staining of DUX4-expressing myoblasts was not different when incubated with either FSHD or healthy control sera. Conclusion: Since the methodology used did not lead to the identification of disease-specific autoantibodies in the FSHD cohort, we suggest that autoantibody-mediated pathology may not be an important disease mechanism in FSHD. Nevertheless, it is crucial to further unravel if and which role the immune system plays in FSHD pathogenesis. Other innate as well as adaptive immune players could be involved in the complex DUX4 cascade of events and could become appealing druggable targets.