Dissemin is shutting down on January 1st, 2025

Published in

Springer, Journal of Natural Medicines, 4(75), p. 926-941, 2021

DOI: 10.1007/s11418-021-01544-8

Links

Tools

Export citation

Search in Google Scholar

Effects of nicotinic acetylcholine receptor-activating alkaloids on anxiety-like behavior in zebrafish

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractAlkaloids are a structurally complex group of natural products that have a diverse range of biological activities and significant therapeutic applications. In this study, we examined the acute, anxiolytic-like effects of nicotinic acetylcholine receptor (nAChR)-activating alkaloids with reported neuropharmacological effects but whose effects on anxiety are less well understood. Because α4β2 nAChRs can regulate anxiety, we first demonstrated the functional activities of alkaloids on these receptors in vitro. Their effects on anxiety-like behavior in zebrafish were then examined using the zebrafish novel tank test (NTT). The NTT is a relatively high-throughput behavioral paradigm that takes advantage of the natural tendency of fish to dive down when stressed or anxious. We report for the first time that cotinine, anatabine, and methylanatabine may suppress this anxiety-driven zebrafish behavior after a single 20-min treatment. Effective concentrations of these alkaloids were well above the concentrations naturally found in plants and the concentrations needed to induce anxiolytic-like effect by nicotine. These alkaloids showed good receptor interactions at the α4β2 nAChR agonist site as demonstrated by in vitro binding and in silico docking model, although somewhat weaker than that for nicotine. Minimal or no significant effect of other compounds may have been due to low bioavailability of these compounds in the brain, which is supported by the in silico prediction of blood–brain barrier permeability. Taken together, our findings indicate that nicotine, although not risk-free, is the most potent anxiolytic-like alkaloid tested in this study, and other natural alkaloids may regulate anxiety as well.