Published in

MDPI, Materials, 1(15), p. 346, 2022

DOI: 10.3390/ma15010346

Links

Tools

Export citation

Search in Google Scholar

Evaluation of Radiation Resistance of Polystyrene Using Molecular Dynamics Simulation

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The scission rates of polystyrene and fluorinated polystyrene irradiated in an irradiation facility with Co-60 γ-rays were determined using molecular dynamics simulation and gel permeation chromatography (GPC) molecular weight distributions. The prediction was based on the assumption that γ-ray energy is transferred to the initial velocity of the primary knock-on atom. We employed a molecular dynamics simulation procedure to compute the changes in bond length between the connections for selected values of the absorbed dose and compared the calculated values with measurements made on the irradiated samples. The samples were exposed to four different absorbed doses of 25, 50, 75, and 100 kGy. The scission process and scission ratio were simulated with LAMMPS with ReaxFF potential for each bond, and we compared the simulation results with the experimental data especially measuring average molecular weight to evaluate the effect of fluorination on radiation enhancement.