Published in

Springer, European Journal of Trauma and Emergency Surgery, 3(48), p. 1737-1749, 2021

DOI: 10.1007/s00068-021-01773-2

Links

Tools

Export citation

Search in Google Scholar

Does 3D-assisted surgery of tibial plateau fractures improve surgical and patient outcome? A systematic review of 1074 patients

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Purpose The aim of this systematic review was to provide an overview of current applications of 3D technologies in surgical management of tibial plateau fractures and to assess whether 3D-assisted surgery results in improved clinical outcome as compared to surgery based on conventional imaging modalities. Methods A literature search was performed in Pubmed and Embase for articles reporting on the use of 3D techniques in operative management of tibial plateau fractures. This systematic review was performed in concordance with the PRISMA-guidelines. Methodological quality and risk of bias was assessed according to the guidelines of the McMaster Critical Appraisal. Differences in terms of operation time, blood loss, fluoroscopy frequency, intra-operative revision rates and patient-reported outcomes between 3D-assisted and conventional surgery were assessed. Data were pooled using the inverse variance weighting method in RevMan. Results Twenty articles evaluating 948 patients treated with 3D-assisted surgery and 126 patients with conventional surgery were included. Five different concepts of 3D-assisted surgery were identified: ‘3D virtual visualization’, ‘3D printed hand-held fracture models’, ‘Pre-contouring of osteosynthesis plates’, ‘3D printed surgical guides’, and ‘Intra-operative 3D imaging’. 3D-assisted surgery resulted in reduced operation time (104.7 vs. 126.4 min; P < 0.01), less blood loss (241 ml vs. 306 ml; P < 0.01), decreased frequency of fluoroscopy (5.8 vs. 9.1 times; P < 0.01). No differences in functional outcome was found (Hospital for Special Surgery Knee-Rating Scale: 88.6 vs. 82.8; P = 0.23). Conclusions Five concepts of 3D-assisted surgical management of tibial plateau fractures emerged over the last decade. These include 3D virtual fracture visualization, 3D-printed hand-held fracture models for surgical planning, 3D-printed models for pre-contouring of osteosynthesis plates, 3D-printed surgical guides, and intra-operative 3D imaging. 3D-assisted surgery may have a positive effect on operation time, blood loss, and fluoroscopy frequency.