Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 17(118), 2021

DOI: 10.1073/pnas.2018229118

Links

Tools

Export citation

Search in Google Scholar

Systems level profiling of chemotherapy-induced stress resolution in cancer cells reveals druggable trade-offs

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

SignificanceCancer therapies often fail to cure patients because a proportion of tumor cells withstand the toxic effects of chemotherapy. How surviving cancer cells recover from sublethal drug-induced stress is not known, but given that cellular resources are finite, stress resolution may come at the expense of less essential systems. Here, we studied the global cellular events of stress buildup and resolution in the bone marrow cancer, multiple myeloma, after proteasome inhibition, a commonly used therapeutic approach. Using a temporal multiomics approach, we delineate the unexpectedly complex and protracted changes myeloma cells undergo during stress resolution and demonstrate that recovering cells are more vulnerable to specific insults than acutely stressed cells. Thus, the findings may provide avenues for optimizing cancer therapies.