Published in

Oxford University Press (OUP), Monthly Notices of the Royal Astronomical Society, 3(503), p. 3414-3433, 2021

DOI: 10.1093/mnras/stab608

Links

Tools

Export citation

Search in Google Scholar

OMC-1 dust polarization in ALMA Band 7: diagnosing grain alignment mechanisms in the vicinity of Orion Source I

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT We present ALMA Band 7 polarization observations of the OMC-1 region of the Orion molecular cloud. We find that the polarization pattern observed in the region is likely to have been significantly altered by the radiation field of the >104 L⊙ high-mass protostar Orion Source I. In the protostar’s optically thick disc, polarization is likely to arise from dust self-scattering. In material to the south of Source I – previously identified as a region of ‘anomalous’ polarization emission – we observe a polarization geometry concentric around Source I. We demonstrate that Source I’s extreme luminosity may be sufficient to make the radiative precession time-scale shorter than the Larmor time-scale for moderately large grains ($\gt 0.005\!-\!0.1\, μ$m), causing them to precess around the radiation anisotropy vector (k-RATs) rather than the magnetic field direction (B-RATs). This requires relatively unobscured emission from Source I, supporting the hypothesis that emission in this region arises from the cavity wall of the Source I outflow. This is one of the first times that evidence for k-RAT alignment has been found outside of a protostellar disc or AGB star envelope. Alternatively, the grains may remain aligned by B-RATs and trace gas infall on to the Main Ridge. Elsewhere, we largely find the magnetic field geometry to be radial around the BN/KL explosion centre, consistent with previous observations. However, in the Main Ridge, the magnetic field geometry appears to remain consistent with the larger-scale magnetic field, perhaps indicative of the ability of the dense Ridge to resist disruption by the BN/KL explosion.