Published in

BioMed Central, BMC Bioinformatics, 1(23), 2022

DOI: 10.1186/s12859-022-04574-5

Links

Tools

Export citation

Search in Google Scholar

scAnnotatR: framework to accurately classify cell types in single-cell RNA-sequencing data

Journal article published in 2022 by Vy Nguyen, Johannes Griss ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Background Automatic cell type identification is essential to alleviate a key bottleneck in scRNA-seq data analysis. While most existing classification tools show good sensitivity and specificity, they often fail to adequately not-classify cells that are missing in the used reference. Additionally, many tools do not scale to the continuously increasing size of current scRNA-seq datasets. Therefore, additional tools are needed to solve these challenges. Results scAnnotatR is a novel R package that provides a complete framework to classify cells in scRNA-seq datasets using pre-trained classifiers. It supports both Seurat and Bioconductor’s SingleCellExperiment and is thereby compatible with the vast majority of R-based analysis workflows. scAnnotatR uses hierarchically organised SVMs to distinguish a specific cell type versus all others. It shows comparable or even superior accuracy, sensitivity and specificity compared to existing tools while being able to not-classify unknown cell types. Moreover, scAnnotatR is the only of the best performing tools able to process datasets containing more than 600,000 cells. Conclusions scAnnotatR is freely available on GitHub (https://github.com/grisslab/scAnnotatR) and through Bioconductor (from version 3.14). It is consistently among the best performing tools in terms of classification accuracy while scaling to the largest datasets.