Published in

MDPI, Cancers, 17(13), p. 4409, 2021

DOI: 10.3390/cancers13174409

Links

Tools

Export citation

Search in Google Scholar

Automated PD-L1 Scoring Using Artificial Intelligence in Head and Neck Squamous Cell Carcinoma

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Immune checkpoint inhibitors (ICI) represent a new therapeutic approach in recurrent and metastatic head and neck squamous cell carcinoma (HNSCC). The patient selection for the PD-1/PD-L1 inhibitor therapy is based on the degree of PD-L1 expression in immunohistochemistry reflected by manually determined PD-L1 scores. However, manual scoring shows variability between different investigators and is influenced by cognitive and visual traps and could therefore negatively influence treatment decisions. Automated PD-L1 scoring could facilitate reliable and reproducible results. Our novel approach uses three neural networks sequentially applied for fully automated PD-L1 scoring of all three established PD-L1 scores: tumor proportion score (TPS), combined positive score (CPS) and tumor-infiltrating immune cell score (ICS). Our approach was validated using WSIs of HNSCC cases and compared with manual PD-L1 scoring by human investigators. The inter-rater correlation (ICC) between human and machine was very similar to the human-human correlation. The ICC was slightly higher between human-machine compared to human-human for the CPS and ICS, but a slightly lower for the TPS. Our study provides deeper insights into automated PD-L1 scoring by neural networks and its limitations. This may serve as a basis to improve ICI patient selection in the future.