Published in

MDPI, Toxins, 1(14), p. 31, 2022

DOI: 10.3390/toxins14010031

Links

Tools

Export citation

Search in Google Scholar

Regulation of Clostridium tetani Neurotoxin Expression by Culture Conditions

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Background: Ensuring consistency of tetanus neurotoxin (TeNT) production by Clostridium tetani could help to ensure consistent product quality in tetanus vaccine manufacturing, ultimately contributing to reduced animal testing. The aim of this study was to identify RNA signatures related to consistent TeNT production using standard and non-standard culture conditions. Methods: We applied RNA sequencing (RNA-Seq) to study C. tetani gene expression in small-scale batches under several culture conditions. Results: We identified 1381 time-dependent differentially expressed genes (DEGs) reflecting, among others, changes in growth rate and metabolism. Comparing non-standard versus standard culture conditions identified 82 condition-dependent DEGs, most of which were specific for one condition. The tetanus neurotoxin gene (tetX) was highly expressed but showed expression changes over time and between culture conditions. The tetX gene showed significant down-regulation at higher pH levels (pH 7.8), which was confirmed by the quantification data obtained with the recently validated targeted LC-MS/MS approach. Conclusions: Non-standard culture conditions lead to different gene expression responses. The tetX gene appears to be the best transcriptional biomarker for monitoring TeNT production as part of batch-to-batch consistency testing during tetanus vaccine manufacturing.