Published in

MDPI, Journal of Fungi, 4(7), p. 270, 2021

DOI: 10.3390/jof7040270

Links

Tools

Export citation

Search in Google Scholar

Identifying Conserved Generic Aspergillus spp. Co-Expressed Gene Modules Associated with Germination Using Cross-Platform and Cross-Species Transcriptomics

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Aspergillus spp. is an opportunistic human pathogen that may cause a spectrum of pulmonary diseases. In order to establish infection, inhaled conidia must germinate, whereby they break dormancy, start to swell, and initiate a highly polarized growth process. To identify critical biological processes during germination, we performed a cross-platform, cross-species comparative analysis of germinating A. fumigatus and A. niger conidia using transcriptional data from published RNA-Seq and Affymetrix studies. A consensus co-expression network analysis identified four gene modules associated with stages of germination. These modules showed numerous shared biological processes between A. niger and A. fumigatus during conidial germination. Specifically, the turquoise module was enriched with secondary metabolism, the black module was highly enriched with protein synthesis, the darkgreen module was enriched with protein fate, and the blue module was highly enriched with polarized growth. More specifically, enriched functional categories identified in the blue module were vesicle formation, vesicular transport, tubulin dependent transport, actin-dependent transport, exocytosis, and endocytosis. Genes important for these biological processes showed similar expression patterns in A. fumigatus and A. niger, therefore, they could be potential antifungal targets. Through cross-platform, cross-species comparative analysis, we were able to identify biologically meaningful modules shared by A. fumigatus and A. niger, which underscores the potential of this approach.