Dissemin is shutting down on January 1st, 2025

Published in

Springer, Plant and Soil, 1-2(476), p. 755-764, 2021

DOI: 10.1007/s11104-021-05195-2

Links

Tools

Export citation

Search in Google Scholar

Using activated charcoal to remove substances interfering with the colorimetric assay of inorganic phosphate in plant extracts

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Aim Organic substances in leaves of several southwest Australian native species interfere with sensitive colorimetric assays and prevent quantification of inorganic phosphate concentration ([Pi]). We aimed to develop a reproducible routine procedure for treating leaf extracts with activated charcoal (AC) to remove interfering substances, allowing the determination of [Pi] by the malachite green spectrophotometric assay. Methods Leaf extracts of native plants from southwest Australia in 1% (v/v) acetic acid were treated with 10 mg mL−1 acid-washed AC for removal of interfering substances. Standard solutions (0 to 18 μM Pi) with and without AC treatment were compared to quantify Pi loss. A spiking and recovery test was performed to validate the AC treatment. Results Leaf extracts treated with AC exhibited distinguishable absorbance peaks for the malachite green-orthophosphate complex between 630 and 650 nm, as opposed to untreated samples. The Pi-adsorption by AC represented a relatively larger fraction of [Pi] in solutions at 0–4 μM Pi range and stabilised at higher [Pi] when maximum adsorption capacity of AC reached at 11.7 μg Pi g−1AC. The Pi recovery after AC treatment in spiked samples ranged between 100 and 111%. Conclusion The AC treatment successfully removed interfering substances from samples but caused Pi loss. Thus, quantification of [Pi] in AC-treated extracts requires sample [Pi] ≥ 6 μM Pi and the use of AC-treated standards. The error of the AC treatment was minor compared with environmental variability of leaf [Pi]. The AC treatment was a reproducible time- and cost-effective method to remove interfering substances from leaf extracts.