Published in

MDPI, Energies, 13(14), p. 3951, 2021

DOI: 10.3390/en14133951

Links

Tools

Export citation

Search in Google Scholar

Anomaly Detection in Photovoltaic Production Factories via Monte Carlo Pre-Processed Principal Component Analysis

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

This paper investigates a use case of robust anomaly detection applied to the scenario of a photovoltaic production factory—namely, Enel Green Power’s 3SUN solar cell production plant in Catania, Italy—by considering a Monte Carlo based pre-processing technique as a valid alternative to other typically used methods. In particular, the proposed method exhibits the following advantages: (i) Outlier replacement, by contrast with traditional methods which are limited to outlier detection only, and (ii) the preservation of temporal locality with respect to the training dataset. After pre-processing, the authors trained an anomaly detection model based on principal component analysis and defined a suitable key performance indicator for each sensor in the production line based on the model errors. In this way, by running the algorithm on unseen data streams, it is possible to isolate anomalous conditions by monitoring the above-mentioned indicators and virtually trigger an alarm when exceeding a reference threshold. The proposed approach was tested on both standard operating conditions and an anomalous scenario. With respect to the considered use case, it successfully anticipated a fault in the equipment with an advance of almost two weeks, but also demonstrated its robustness to false alarms during normal conditions.