Dissemin is shutting down on January 1st, 2025

Published in

IOS Press, Journal of Intelligent and Fuzzy Systems, 6(42), p. 6221-6234, 2022

DOI: 10.3233/jifs-212788

Links

Tools

Export citation

Search in Google Scholar

Long short-term memory stacking model to predict the number of cases and deaths caused by COVID-19

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The long short-term memory (LSTM) is a high-efficiency model for forecasting time series, for being able to deal with a large volume of data from a time series with nonlinearities. As a case study, the stacked LSTM will be used to forecast the growth of the pandemic of COVID-19, based on the increase in the number of contaminated and deaths in the State of Santa Catarina, Brazil. COVID-19 has been spreading very quickly, causing great concern in relation to the ability to care for critically ill patients. Control measures are being imposed by governments with the aim of reducing the contamination and the spreading of viruses. The forecast of the number of contaminated and deaths caused by COVID-19 can help decision making regarding the adopted restrictions, making them more or less rigid depending on the pandemic’s control capacity. The use of LSTM stacking shows an R2 of 0.9625 for confirmed cases and 0.9656 for confirmed deaths caused by COVID-19, being superior to the combinations among other evaluated models.