JMIR Publications, JMIR Rehabilitation and Assistive Technologies, 1(9), p. e27637, 2022
DOI: 10.2196/27637
Full text: Download
Background Heart rate (HR) is an important and commonly measured physiological parameter in wearables. HR is often measured at the wrist with the photoplethysmography (PPG) technique, which determines HR based on blood volume changes, and is therefore influenced by blood pressure. In individuals with spinal cord injury (SCI), blood pressure control is often altered and could therefore influence HR accuracy measured by the PPG technique. Objective The objective of this study is to investigate the HR accuracy measured with the PPG technique with a Fitbit Charge 2 (Fitbit Inc) in wheelchair users with SCI, how the activity intensity affects the HR accuracy, and whether this HR accuracy is affected by lesion level. Methods The HR of participants with (38/48, 79%) and without (10/48, 21%) SCI was measured during 11 wheelchair activities and a 30-minute strength exercise block. In addition, a 5-minute seated rest period was measured in people with SCI. HR was measured with a Fitbit Charge 2, which was compared with the HR measured by a Polar H7 HR monitor used as a reference device. Participants were grouped into 4 groups—the no SCI group and based on lesion level into the <T5 (midthoracic and lower) group, T5-T1 (high-thoracic) group, and >T1 (cervical) group. Mean absolute percentage error (MAPE) and concordance correlation coefficient were determined for each group for each activity type, that is, rest, wheelchair activities, and strength exercise. Results With an overall MAPEall lesions of 12.99%, the accuracy fell below the standard acceptable MAPE of –10% to +10% with a moderate agreement (concordance correlation coefficient=0.577). The HR accuracy of Fitbit Charge 2 seems to be reduced in those with cervical lesion level in all activities (MAPEno SCI=8.09%; MAPE<T5=11.16%; MAPET1−T5=10.5%; and MAPE>T1=20.43%). The accuracy of the Fitbit Charge 2 decreased with increasing intensity in all lesions (MAPErest=6.5%, MAPEactivity=12.97%, and MAPEstrength=14.2%). Conclusions HR measured with the PPG technique showed lower accuracy in people with SCI than in those without SCI. The accuracy was just above the acceptable level in people with paraplegia, whereas in people with tetraplegia, a worse accuracy was found. The accuracy seemed to worsen with increasing intensities. Therefore, high-intensity HR data, especially in people with cervical lesions, should be used with caution.