Published in

American Astronomical Society, Astrophysical Journal, 1(910), p. 24, 2021

DOI: 10.3847/1538-4357/abdec4

Links

Tools

Export citation

Search in Google Scholar

On the Impact of 22Ne on the Pulsation Periods of Carbon–Oxygen White Dwarfs with Helium-dominated Atmospheres

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract We explore changes in the adiabatic low-order g-mode pulsation periods of 0.526, 0.560, and 0.729 M carbon–oxygen white dwarf models with helium-dominated envelopes due to the presence, absence, and enhancement of 22Ne in the interior. The observed g-mode pulsation periods of such white dwarfs are typically given to 6−7 significant figures of precision. Usually white dwarf models without 22Ne are fit to the observed periods and other properties. The rms residuals to the ≃150−400 s low-order g-mode periods are typically in the range of σ rms ≲ 0.3 s, for a fit precision of σ rms/P ≲ 0.3%. We find average relative period shifts of ΔP/P ≃ ±0.5% for the low-order dipole and quadrupole g-mode pulsations within the observed effective temperature window, with the range of ΔP/P depending on the specific g-mode, abundance of 22Ne, effective temperature, and the mass of the white dwarf model. This finding suggests a systematic offset may be present in the fitting process of specific white dwarfs when 22Ne is absent. As part of the fitting processes involves adjusting the composition profiles of a white dwarf model, our study on the impact of 22Ne can provide new inferences on the derived interior mass fraction profiles. We encourage routinely including 22Ne mass fraction profiles, informed by stellar evolution models, to future generations of white dwarf model-fitting processes.