Dissemin is shutting down on January 1st, 2025

Published in

Oxford University Press, Stem Cells, 6(39), p. 673-696, 2021

DOI: 10.1002/stem.3353

Links

Tools

Export citation

Search in Google Scholar

Human induced pluripotent stem cells and CRISPR/Cas-mediated targeted genome editing: Platforms to tackle sensorineural hearing loss

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Hearing loss (HL) is a major global health problem of pandemic proportions. The most common type of HL is sensorineural hearing loss (SNHL) which typically occurs when cells within the inner ear are damaged. Human induced pluripotent stem cells (hiPSCs) can be generated from any individual including those who suffer from different types of HL. The development of new differentiation protocols to obtain cells of the inner ear including hair cells (HCs) and spiral ganglion neurons (SGNs) promises to expedite cell-based therapy and screening of potential pharmacologic and genetic therapies using human models. Considering age-related, acoustic, ototoxic, and genetic insults which are the most frequent causes of irreversible damage of HCs and SGNs, new methods of genome editing (GE), especially the CRISPR/Cas9 technology, could bring additional opportunities to understand the pathogenesis of human SNHL and identify novel therapies. However, important challenges associated with both hiPSCs and GE need to be overcome before scientific discoveries are correctly translated to effective and patient-safe applications. The purpose of the present review is (a) to summarize the findings from published reports utilizing hiPSCs for studies of SNHL, hence complementing recent reviews focused on animal studies, and (b) to outline promising future directions for deciphering SNHL using disruptive molecular and genomic technologies.