Published in

BioScientifica, Journal of Endocrinology, 3(251), p. 207-222, 2021

DOI: 10.1530/joe-20-0321

Links

Tools

Export citation

Search in Google Scholar

Calcium transport in male reproduction is possibly influenced by vitamin D and CaSR

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Vitamin D is important for gonadal function in rodents, and improvement of vitamin D status in men with low sperm counts increases live birth rate. Vitamin D is a regulator of transcellular calcium transport in the intestine and kidney and may influence the dramatic changes in the luminal calcium concentration in epididymis. Here, we show spatial expression in the male reproductive tract of vitamin D receptor (VDR)-regulated factors involved in calcium transport: transient receptor potential vanilloid 5/6 , sodium/calcium exchanger 1, plasma membrane calcium ATPase 1, calbindin D9k, calcium-sensing receptor (CaSR), and parathyroid hormone-related peptide (PTHrP) in mouse and human testis and epididymis. Testicular Casr expression was lower in Vdr ablated mice compared with controls. Moreover, expression levels of Casr and Pthrp were strongly correlated in both testis and epididymis and Pthrp was suppressed by 1,25(OH)2D3 in a spermatogonial cell line. The expression of CaSR in epididymis may be of greater importance than in the gonad in mice as germ cell-specific Casr deficient mice had no major reproductive phenotype, and coincubation with a CaSR-agonist had no effect on human sperm–oocyte binding. In humans, seminal calcium concentration between 5 and 10 mM was associated with a higher fraction of motile and morphologically normal sperm cells, and the seminal calcium concentration was not associated with serum calcium levels. In conclusion, VDR regulates CaSR and PTHrP, and both factors may be involved in the regulation of calcium transport in the male reproductive tract with possible implications for sperm function and storage.