Published in

Nature Research, Nature Communications, 1(12), 2021

DOI: 10.1038/s41467-021-27514-y

Links

Tools

Export citation

Search in Google Scholar

Correlated states in doubly-aligned hBN/graphene/hBN heterostructures

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractInterfacial moiré superlattices in van der Waals vertical assemblies effectively reconstruct the crystal symmetry, leading to opportunities for investigating exotic quantum states. Notably, a two-dimensional nanosheet has top and bottom open surfaces, allowing the specific case of doubly aligned super-moiré lattice to serve as a toy model for studying the tunable lattice symmetry and the complexity of related electronic structures. Here, we show that by doubly aligning a graphene monolayer to both top and bottom encapsulating hexagonal boron nitride (h-BN), multiple conductivity minima are observed away from the main Dirac point, which are sensitively tunable with respect to the small twist angles. Moreover, our experimental evidences together with theoretical calculations suggest correlated insulating states at integer fillings of −5, −6, −7 electrons per moiré unit cell, possibly due to inter-valley coherence. Our results provide a way to construct intriguing correlations in 2D electronic systems in the weak interaction regime.