Dissemin is shutting down on January 1st, 2025

Published in

Public Library of Science, PLoS Neglected Tropical Diseases, 10(15), p. e0009803, 2021

DOI: 10.1371/journal.pntd.0009803

Links

Tools

Export citation

Search in Google Scholar

Towards soil-transmitted helminths transmission interruption: The impact of diagnostic tools on infection prediction in a low intensity setting in Southern Mozambique

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

World Health Organization goals against soil-transmitted helminthiases (STH) are pointing towards seeking their elimination as a public health problem: reducing to less than 2% the proportion of moderate and heavy infections. Some regions are reaching WHO goals, but transmission could rebound if strategies are discontinued without an epidemiological evaluation. For that, sensitive diagnostic methods to detect low intensity infections and localization of ongoing transmission are crucial. In this work, we estimated and compared the STH infection as obtained by different diagnostic methods in a low intensity setting. We conducted a cross-sectional study enrolling 792 participants from a district in Mozambique. Two stool samples from two consecutive days were collected from each participant. Samples were analysed by Telemann, Kato-Katz and qPCR for STH detection. We evaluated diagnostic sensitivity using a composite reference standard. By geostatistical methods, we estimated neighbourhood prevalence of at least one STH infection for each diagnostic method. We used environmental, demographical and socioeconomical indicators to account for any existing spatial heterogeneity in infection. qPCR was the most sensitive technique compared to composite reference standard: 92% (CI: 83%– 97%) for A. lumbricoides, 95% (CI: 88%– 98%) for T. trichiura and 95% (CI: 91%– 97%) for hookworm. qPCR also estimated the highest neighbourhood prevalences for at least one STH infection in a low intensity setting. While 10% of the neighbourhoods showed a prevalence above 20% when estimating with single Kato-Katz from one stool and Telemann from one stool, 86% of the neighbourhoods had a prevalence above 20% when estimating with qPCR. In low intensity settings, STH estimated prevalence of infection may be underestimated if based on Kato-Katz. qPCR diagnosis outperformed the microscopy methods. Thus, implementation of qPCR based predictive maps at STH control and elimination programmes would disclose hidden transmission and facilitate targeted interventions for transmission interruption.