Published in

Cambridge University Press, Quarterly Reviews of Biophysics, (54), 2021

DOI: 10.1017/s0033583521000081

Links

Tools

Export citation

Search in Google Scholar

The mechanics of mitotic chromosomes

Journal article published in 2021 by T. Man ORCID, H. Witt ORCID, E. J. G. Peterman ORCID, G. J. L. Wuite ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractCondensation and faithful separation of the genome are crucial for the cellular life cycle. During chromosome segregation, mechanical forces generated by the mitotic spindle pull apart the sister chromatids. The mechanical nature of this process has motivated a lot of research interest into the mechanical properties of mitotic chromosomes. Although their fundamental mechanical characteristics are known, it still remains unclear how these characteristics emerge from the structure of the mitotic chromosome. Recent advances in genomics, computational and super-resolution microscopy techniques have greatly promoted our understanding of the chromosomal structure and have motivated us to review the mechanical characteristics of chromosomes in light of the current structural insights. In this review, we will first introduce the current understanding of the chromosomal structure, before reviewing characteristic mechanical properties such as the Young's modulus and the bending modulus of mitotic chromosomes. Then we will address the approaches used to relate mechanical properties to the structure of chromosomes and we will also discuss how mechanical characterization can aid in elucidating their structure. Finally, future challenges, recent developments and emergent questions in this research field will be discussed.